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• Many different vectors
(e.g., L2/L3 cache, storage, main memory)

Co-residency side-channel attacks in clouds

Stealing secrets (e.g., keys)

Demonstrated side-channel attacks are not limited to: 
Y. Zhang et al., CCS2012; T. Ristenpart et al., CCS2009; F. Liu et al., Oakland 2015
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What about future side-channel attacks?
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• Opt-in Service
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Nomad Practical Challenges

Cloud Controller

Machine Machine Machine

VM VM VMVM

Logic

Characterize information leakage
due to co-residency

Scalable Design
e.g., can Amazon EC2 run this?

Practical Impact (cloud)
Minimal modifications?

Practical Impact (applications)
1) Advancement of VM migration techniques 
2) Many cloud workloads with in-built resilience to migration
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Threat Model

• Can use any kind of resource 
• Can launch/terminate VMs at will
• VMs of a given client can collaborate

• Cannot control VM placement

• No info. sharing across distinct clients

Objective: Extract secrets via co-residency

• Don’t know which other clients are malicious

Provider

?
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Replicated?  

Information Leakage (InfoLeak) Model 
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Operational Timeline

1 epoch = D time units

Run placement algorithm every epoch

Sliding Window of ∆ epochs 

Time (epoch)

Provider chooses D and ∆ to AT LEAST satisfy:

D * ∆ * K < P

Extracted secret (bits) if two VMs are co-resident for ∆ epochs
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F(Deployment Model)
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Placement
Algorithm

Inputs

VM Placement

Challenge: Scalability

Should handle tens of thousands of servers

• ILP (Integer Linear Programming)

• Basic Greedy

• Basic Greedy with our optimizations

For 40 machines, D > 1 day 

For 400 machines, D > 1 day
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System Implementation (One Cluster)

VM Placement

OpenStack Icehouse:
~200 LOC in Controller 
Scheduler code

Custom C++
~2000 LOC

General Placement 
Computation

OpenStack-specific
Migration Engine

Cluster 1 
Placement Algorithm

Requires minimal modifications to existing deployments



Key Evaluation Questions

• Information leakage resilience

• Scalability

• Impact on cloud applications 

• Benefit/Cost of each design idea

• Resilience to strategic adversary



Information Leakage resilience
<R,C>: Problem size of 20-machines 

Nomad brings ~4.5x reduction in InfoLeak for 98th percentile 
compared to static w.r.t. ILP.

Metric: 

𝐼𝑛𝑓𝑜𝐿𝑒𝑎𝑘𝑐 →𝑐′([𝑡 − ∆, 𝑡])



Nomad placement algorithm is scalable to large deployments

Scalability



Impact on cloud applications

Replicated web-server (Wikibench)
• Each client : 3 replicated web servers, 1 worker 

– In one epoch, at least 1 server migrates

𝑁𝑜𝑟𝑚. 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑁𝑜𝑟𝑚. 𝑇) =
𝑇𝑤/𝑜 − 𝑇𝑤

𝑇𝑤/𝑜
𝑥 100

• Overhead (Norm. T)
– ~0%  for 95th Norm T.

– 0.096% for 50th (median) Norm. T.

– 1.8% for 5th Norm. T



Discussion
• Fast side-channel attacks

– Need out-of-band defense 
– e.g., introduce cache noise, refresh secret

• Network Impact
– With techniques like incremental diffs, the transfer size is 

much less than base VM image 

• Incentives for adoption
– Security-conscious clients opt-in
– Providers have new revenue streams

• More opportunities
– Fairness across clients



Conclusions
• Co-residency side-channel attacks: real/growing threats

• Nomad achieves:

– Information leakage resilience close to the ILP

– Scalable VM placement algorithm

– Practical system atop OpenStack with minimal modifications

Current World :
No Migration
1. Per-attack fixes
2. Require significant upgrades

Nomad: 
“Migration-as-a-Service”
1. General solution
2. Needs minimal changes


