
Nomad: Mitigating Arbitrary
Cloud Side Channels

via Provider-Assisted Migration

Soo-Jin Moon, Vyas Sekar Michael K. Reiter

• Many different vectors
(e.g., L2/L3 cache, storage, main memory)

Co-residency side-channel attacks in clouds

Stealing secrets (e.g., keys)

Demonstrated side-channel attacks are not limited to:
Y. Zhang et al., CCS2012; T. Ristenpart et al., CCS2009; F. Liu et al., Oakland 2015

VM VM

Machine

VM

Machine

1. Requires significant/detailed upgrades

2. Attack-specific

Limitations of Current Defenses

Hardware

Hypervisor

e.g., New cache design

e.g., Deterministic execution

e.g., Noise injectionOS

Proposed defense includes but not limited to: Y. Zhang et al., CCS2013; T. Kim et al., USENIXSec 2012;
F. Liu and R. Lee, Micro 2014

OS

1. Requires significant/detailed upgrades

2. Attack-specific

Limitations of Current Defenses

Hardware

Hypervisor

e.g., New cache design

e.g., Deterministic execution

e.g., Noise injectionOS

Proposed defense includes but not limited to: Y. Zhang et al., CCS2013; T. Kim et al., USENIXSec 2012;
F. Liu and R. Lee, Micro 2014

What about future side-channel attacks?

OS

Ideal Properties

1) General

2) Immediately deployable

Ideal Properties

1) General

2) Immediately deployable

Single-tenancy?

Ideal Properties

1) General

2) Immediately deployable

Single-tenancy?

Nomad Ideas

1) General

2) Immediately deployable

Nomad Ideas

1) General

2) Immediately deployable

Tackle root-cause

→ Minimize co-residency

Nomad Ideas

1) General

2) Immediately deployable

Tackle root-cause

Migration

→ Minimize co-residency

Cloud Controller

Machine

VM

Machine Machine

VM VM

Nomad Vision: Migration-as-a-Service

VM

• Provider-assisted

Cloud Controller

Machine

VM

Machine Machine

VM VM

Nomad Vision: Migration-as-a-Service

Move VMs {…}

VM

• Provider-assisted

Cloud Controller

Machine

VM

Machine Machine

VM VM

Nomad Vision: Migration-as-a-Service

Move VMs {…}

VM

Cloud
Provider

Clients
Service offering

Opt-in?

• Opt-in Service

• Provider-assisted

Nomad Practical Challenges

Cloud Controller

Machine Machine Machine

VM VM VMVM

Logic

Characterize information leakage
due to co-residency

Nomad Practical Challenges

Cloud Controller

Machine Machine Machine

VM VM VMVM

Logic

Characterize information leakage
due to co-residency

Scalable Design
e.g., can Amazon EC2 run this?

Nomad Practical Challenges

Cloud Controller

Machine Machine Machine

VM VM VMVM

Logic

Characterize information leakage
due to co-residency

Scalable Design
e.g., can Amazon EC2 run this?

Practical Impact (cloud)
Minimal modifications?

Nomad Practical Challenges

Cloud Controller

Machine Machine Machine

VM VM VMVM

Logic

Characterize information leakage
due to co-residency

Scalable Design
e.g., can Amazon EC2 run this?

Practical Impact (cloud)
Minimal modifications?

Practical Impact (applications)
1) Advancement of VM migration techniques
2) Many cloud workloads with in-built resilience to migration

Our Work

General side-channel
defense via migration

1. Idea

Our Work

General side-channel
defense via migration

1. Idea
Characterize information

leakage due to co-residency

2. Logic

Our Work

General side-channel
defense via migration

1. Idea
Characterize information

leakage due to co-residency

2. Logic

Scalable VM migration strategy
that can handle large cloud deployments

3. Scalable Design

Our Work

General side-channel
defense via migration

1. Idea
Characterize information

leakage due to co-residency

2. Logic

Scalable VM migration strategy
that can handle large cloud deployments

3. Scalable Design

Practical OpenStack implementation with
minimal modifications

4. Practical Impact

Our Work

General side-channel
defense via migration

1. Idea
Characterize information

leakage due to co-residency

Scalable VM migration strategy
that can handle large cloud deployments

Practical OpenStack implementation with
minimal modifications

2. Logic

3. Scalable Design

4. Practical Impact

Threat Model

• Can use any kind of resource
• Can launch/terminate VMs at will
• VMs of a given client can collaborate

Objective: Extract secrets via co-residency

Threat Model

• Can use any kind of resource
• Can launch/terminate VMs at will
• VMs of a given client can collaborate

• Cannot control VM placement

• No info. sharing across distinct clients

Objective: Extract secrets via co-residency

Threat Model

• Can use any kind of resource
• Can launch/terminate VMs at will
• VMs of a given client can collaborate

• Cannot control VM placement

• No info. sharing across distinct clients

Objective: Extract secrets via co-residency

• Don’t know which other clients are malicious

Provider

?

Information Leakage (InfoLeak) Model

Clients InfoLeak ?

Information Leakage (InfoLeak) Model

Clients

Replicated? (R or NR)

R

InfoLeak ?

B1 B2

VM-level
view

Information Leakage (InfoLeak) Model

Clients

Replicated? (R or NR)

R

InfoLeak ?

B1

NR
B1 B2

B2

VM-level
view

Information Leakage (InfoLeak) Model

Clients

R1 R2

Replicated? (R or NR) Collaborating? (C or NC)

R

InfoLeak ?

B1

NR

C

B1 B2

B2

VM-level
view

Information Leakage (InfoLeak) Model

Clients

R1 R2

Replicated? (R or NR) Collaborating? (C or NC)

R

InfoLeak ?

B1

NR

C

NC
B1 B2

B2

R1 R2

VM-level
view

Replicated?

Information Leakage (InfoLeak) Model

Collaborating?

<NR,NC> <R,NC>

<R,C><NR,C>

NR R

NC

C

Least InfoLeak

Most InfoLeak

Our Work

General side-channel
defense via migration

1. Idea
Characterize information

leakage due to co-residency

Scalable VM migration strategy
that can handle large cloud deployments

Practical OpenStack implementation with
minimal modifications

2. Logic

3. Scalable Design

4. Practical Impact

System Overview

Cloud Controller

Machine

VM

Machine Machine

VM VM

Move VMs {…}

VM

System Overview

Cloud
Provider

Clients

Deployment model
(e.g., <NR,NC>)

Opt-in?

Cloud Controller

Machine

VM

Machine Machine

VM VM

Move VMs {…}

VM

Operational Timeline

1 epoch = D time units

Run placement algorithm every epoch

Sliding Window of ∆ epochs

Time (epoch)

Operational Timeline

1 epoch = D time units

Side-channel Parameters:
• K: Information leakage rate (i.e., bits per time unit)
• P: secret length (i.e., bits)

Run placement algorithm every epoch

Sliding Window of ∆ epochs

Time (epoch)

Operational Timeline

1 epoch = D time units

Run placement algorithm every epoch

Sliding Window of ∆ epochs

Time (epoch)

Provider chooses D and ∆ to AT LEAST satisfy:

D * ∆ * K < P

Extracted secret (bits) if two VMs are co-resident for ∆ epochs

Placement Algorithm

Placement
Algorithm

Recent VM
Placements

Deployment
Model

(e.g.,<NR,NC>)

Client
Workloads &
Constraints

VM Placement

Placement Algorithm

Placement
Algorithm

Recent VM
Placements

Deployment
Model

(e.g.,<NR,NC>)

Client
Workloads &
Constraints

VM Placement

Goal (per epoch):
Minimize a global sum of a client-
pair InfoLeak across past ∆ epochs
i.e.,

subject to a fixed migration budget

𝑐,𝑐′

𝐼𝑛𝑓𝑜𝐿𝑒𝑎𝑘𝑐 →𝑐′([𝑡 − ∆, 𝑡])

Placement Algorithm

Placement
Algorithm

Recent VM
Placements

Deployment
Model

(e.g.,<NR,NC>)

Client
Workloads &
Constraints

VM Placement

Goal (per epoch):
Minimize a global sum of a client-
pair InfoLeak across past ∆ epochs
i.e.,

subject to a fixed migration budget

𝑐,𝑐′

𝐼𝑛𝑓𝑜𝐿𝑒𝑎𝑘𝑐 →𝑐′([𝑡 − ∆, 𝑡])

F(Deployment Model)

Placement Algorithm

Placement
Algorithm

Recent VM
Placements

Deployment
Model

(e.g.,<NR,NC>)

Client
Workloads &
Constraints

VM Placement

Goal (per epoch):
Minimize a global sum of a client-
pair InfoLeak across past ∆ epochs
i.e.,

subject to a fixed migration budget

𝑐,𝑐′

𝐼𝑛𝑓𝑜𝐿𝑒𝑎𝑘𝑐 →𝑐′([𝑡 − ∆, 𝑡])

F(Deployment Model)

F(Network Capacity)

Placement
Algorithm

Inputs

VM Placement

Challenge: Scalability

Should handle tens of thousands of servers

Placement
Algorithm

Inputs

VM Placement

Challenge: Scalability

Should handle tens of thousands of servers

• ILP (Integer Linear Programming)

For 40 machines, D > 1 day

Placement
Algorithm

Inputs

VM Placement

Challenge: Scalability

Should handle tens of thousands of servers

• ILP (Integer Linear Programming)

For 40 machines, D > 1 day

Placement
Algorithm

Inputs

VM Placement

Challenge: Scalability

Should handle tens of thousands of servers

• ILP (Integer Linear Programming)

• Basic Greedy

For 40 machines, D > 1 day

For 400 machines, D > 1 day

Placement
Algorithm

Inputs

VM Placement

Challenge: Scalability

Should handle tens of thousands of servers

• ILP (Integer Linear Programming)

• Basic Greedy

For 40 machines, D > 1 day

For 400 machines, D > 1 day

Placement
Algorithm

Inputs

VM Placement

Challenge: Scalability

Should handle tens of thousands of servers

• ILP (Integer Linear Programming)

• Basic Greedy

• Basic Greedy with our optimizations

For 40 machines, D > 1 day

For 400 machines, D > 1 day

Why is Basic Greedy not scalable?

Generate Moves

Compute Benefit
(total reduction in infoLeak)

Pick Best Move

Make Move

totalNumMove > Budget

Pairwise Swap: 1-2 -> 2-1

Exit
Yes

No

N-way Swap: …

…

Why is Basic Greedy not scalable?

Generate Moves

Compute Benefit
(total reduction in infoLeak)

Pick Best Move

Make Move

totalNumMove > Budget

Free Insert: 1 -> M1

Pairwise Swap: 1-2 -> 2-1

Exit
Yes

No

N-way Swap: …

…

Bottleneck #1:

Large Search Space

Why is Basic Greedy not scalable?

Generate Moves

Compute Benefit
(total reduction in infoLeak)

Pick Best Move

Make Move

totalNumMove > Budget

Free Insert: 1 -> M1

Pairwise Swap: 1-2 -> 2-1

Exit
Yes

No

N-way Swap: …

…

Bottleneck #1:

Large Search Space

Bottleneck #2:

Computing InfoLeak
across all clients

Why is Basic Greedy not scalable?

Generate Moves

Compute Benefit
(total reduction in infoLeak)

Pick Best Move

Make Move

totalNumMove > Budget

Free Insert: 1 -> M1

Pairwise Swap: 1-2 -> 2-1

Exit
Yes

No

N-way Swap: …

…

Bottleneck #1:

Large Search Space

Bottleneck #2:

Computing InfoLeak
across all clients

Bottleneck #3:

Re-generating
move table after

each move

Our Approach

Large Search Space

Computing InfoLeak
across all clients

Re-generating
move table after

each move

Prune Search Space

Incremental Benefit
Computation

Intra-Epoch
Lazy Evaluation

Bottlenecks Our Approach

Our Approach

Large Search Space

Computing InfoLeak
across all clients

Re-generating
move table after

each move

Prune Search Space

Incremental Benefit
Computation

Intra-Epoch
Lazy Evaluation

Bottlenecks Our Approach

Prune #1: Pruning Move Space

Sets of all moves

Insert
1 -> M1

Pairwise Swap
1-2 -> 2-1

N-way Swap
….

...

Prune #1: Pruning Move Space

Nomad sets of all moves

Sets of all moves

Insert
1 -> M1

Pairwise Swap
1-2 -> 2-1

N-way Swap
….

Free Insert
1 -> M1

Pairwise Swap
1-2 -> 2-1

...

Prune #2: Hierarchical Decomposition
Sets of all free inserts

M1

M2

.

.

.
M50000

C1

.

.
C1000

Clients Machines

Prune #2: Hierarchical Decomposition
Sets of all free inserts

M1

M2

.

.

.
M50000

C1

.

.
C1000

Clients Machines

Prune #2: Hierarchical Decomposition
Nomad sets of all free insertsSets of all free inserts

M1

M2

.

.

.
M50000

C1

.

.
C1000

C1

.
C1000

Clients Machines
Cluster1

.
Cluster25

Prune #2: Hierarchical Decomposition
Nomad sets of all free insertsSets of all free inserts

M1

M2

.

.

.
M50000

C1

.

.
C1000

M1

M2

.

.
M2000...

C1

.
C1000

Clients Machines

Cluster1C1

Cluster1

.
Cluster25

Our Work

General side-channel
defense via migration

1. Idea
Characterize information

leakage due to co-residency

Scalable VM migration strategy
that can handle large cloud deployments

Practical OpenStack implementation with
minimal modifications

2. Logic

3. Scalable Design

4. Practical Impact

System Implementation

Cloud Controller

Cluster N
Placement Algorithm

Cluster 1
Placement Algorithm

VM Placements for Cluster1

Clients in Cluster 1 Clients in Cluster N

…

VM Placements for Cluster1

OpenStack
v. Icehouse

System Implementation (One Cluster)

VM Placement

OpenStack Icehouse:
~200 LOC in Controller
Scheduler code

Custom C++
~2000 LOC

General Placement
Computation

OpenStack-specific
Migration Engine

Cluster 1
Placement Algorithm

System Implementation (One Cluster)

VM Placement

OpenStack Icehouse:
~200 LOC in Controller
Scheduler code

Custom C++
~2000 LOC

General Placement
Computation

OpenStack-specific
Migration Engine

Cluster 1
Placement Algorithm

Requires minimal modifications to existing deployments

Key Evaluation Questions

• Information leakage resilience

• Scalability

• Impact on cloud applications

• Benefit/Cost of each design idea

• Resilience to strategic adversary

Information Leakage resilience
<R,C>: Problem size of 20-machines

Nomad brings ~4.5x reduction in InfoLeak for 98th percentile
compared to static w.r.t. ILP.

Metric:

𝐼𝑛𝑓𝑜𝐿𝑒𝑎𝑘𝑐 →𝑐′([𝑡 − ∆, 𝑡])

Nomad placement algorithm is scalable to large deployments

Scalability

Impact on cloud applications

Replicated web-server (Wikibench)
• Each client : 3 replicated web servers, 1 worker

– In one epoch, at least 1 server migrates

𝑁𝑜𝑟𝑚. 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑁𝑜𝑟𝑚. 𝑇) =
𝑇𝑤/𝑜 − 𝑇𝑤

𝑇𝑤/𝑜
𝑥 100

• Overhead (Norm. T)
– ~0% for 95th Norm T.

– 0.096% for 50th (median) Norm. T.

– 1.8% for 5th Norm. T

Discussion
• Fast side-channel attacks

– Need out-of-band defense
– e.g., introduce cache noise, refresh secret

• Network Impact
– With techniques like incremental diffs, the transfer size is

much less than base VM image

• Incentives for adoption
– Security-conscious clients opt-in
– Providers have new revenue streams

• More opportunities
– Fairness across clients

Conclusions
• Co-residency side-channel attacks: real/growing threats

• Nomad achieves:

– Information leakage resilience close to the ILP

– Scalable VM placement algorithm

– Practical system atop OpenStack with minimal modifications

Current World :
No Migration
1. Per-attack fixes
2. Require significant upgrades

Nomad:
“Migration-as-a-Service”
1. General solution
2. Needs minimal changes

